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A theoretical study is made of the stability of pipe flow with superimposed rigid 
rotation to finite-amplitude disturbances at  high Reynolds number. The non- 
axisymmetric mode that requires the least amount of rotation for linear instability 
is considered. An amplitude expansion is developed close to the corresponding neutral 
stability curve ; the appropriate Landau constant is calculated. It is demonstrated 
that the flow exhibits nonlinear subcritical instability, the nonlinear effects being 
particularly strong owing to the large magnitude of the Landau constant. These 
findings support the view that a small amount of extraneous rotation could play a 
significant role in the transition to turbulence of pipe flow. 

1. Introduction 
The instability of laminar pipe flow and its transition to turbulence, first observed 

by Reynolds (1883), marked the starting point of extensive theoretical and experi- 
mental efforts to understand the mechanisms by which laminar shear flows undergo 
transition to turbulence. A century of scientific investigation has revealed much about 
this complex phenomenon in a number of flows. Despite many attempts, however, 
the instability of fully developed Poiseuille flow in a circular pipe has defied an 
entirely satisfactory theoretical explanation. 

The main obstacle to gaining an understanding of pipe-flow instability is the 
well-accepted fact that linear-stability theory cannot provide a finite critical Reynolds 
number: all infinitesimal disturbances are damped at all Reynolds numbers (Salwen, 
Cotton & Grosch 1980). On the other hand, experimentally, pipe flow can indeed be 
kept laminar up to quite high Reynolds numbers (about 13000 according to Leite 
1959) if only axisymmetric perturbations are allowed, but undergoes transition at  
a Reynolds number ofabout 2000 when non-axisymmetric disturbancesare introduced 
(Bhat 1966). The inadequacy of linear stability theory to account for the observed 
instability points to the relevance of finite-amplitude disturbances. However, various 
attempts to pinpoint the destabilizing nature of finite-amplitude effects for linearly 
damped axisymmetric disturbances (Davey & Nguyen 1971 ; Itoh 1977) through 
amplitude expansions of the StuartWatson type have given inconsistent results 
(Davey 1978), since there is no neutral-stability curve about which to perturb 
(Herbert 1983). In fact, direct numerical computations by Patera & Orszag (1981) 
indicate that all finite-amplitude axisymmetric disturbances in pipe flow are damped ; 
more recent numerical experiments (Orszag & Patera 1983) suggest the possibility 
of a secondary instability akin to the one found in plane Poiseuille flow : infinitesimal 
non-axisymmetric perturbations superposed on decaying finite-amplitude axisym- 
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metric states may amplify at high-enough Reynolds numbers (higher than about 
4000), but the origin of the assumed axisymmetric states still remains unclear. On the 
other hand, based on an  asymptotic analysis, Smith & Bodonyi (1982) infer that 
finite-amplitude non-axisymmetric (azimuthal wavenumber equal to one) neutral 
disturbances exist in pipe flow a t  high Reynolds number, so that the nonlinear effects 
dominate the viscous effects a t  the critical layer. However, as their work deals solely 
with neutral disturbances, i t  is not clear whether these neutral disturbances represent 
isolated finite-amplitude states or stability boundaries. 

The motivation for this work comes from the findings of Mackrodt (1976) and Cotton 
& Salwen (1981) concerning the stability of pipe flow with superimposed rigid 
rotation; they point out that the addition of rigid rotation makes pipe flow linearly 
unstable to non-axisymmetric disturbances. Mackrodt suggests that, a t  high Reynolds 
number (when instability in pipe flow is observed experimentally), the small amount 
of rotation required to  destabilize pipe flow could have escaped notice in experiment. 
In  such a case, the question arises as to whether finite-amplitude effects tend to 
further destabilize the flow, so that nonlinear subcritical instability occrus as in plane 
Poiseuille flow, or the initial exponential growth predicted by the linear theory is 
eventually saturated. I n  the present paper, this question is addressed by investigating 
the nonlinear evolution of the non-axisymmetric mode that requires the least amount 
of rotation for linear instability. A nonlinear amplitude expansion is developed close 
to the neutral-stability curve predicted by the linear theory, so that no inconsistencies 
of the type previously encountered in non-rotating pipe flow (Davey 1978) are present. 
It is found that the nonlinear effects are particularly strong: the calculated Landau 
constants are surprisingly large in magnitude owing to the large mean-flow distortion 
induced by the fluctuating Reynolds stresses. Thus, nonlinear subcritical instability 
occurs : the flow is nonlinearly unstable to non-axisymmetric perturbations even when 
the rotation is smaller than that required for linear instability. These findings support 
the suggestion of Mackrodt (1976) that  a very small amount of extraneous rotation 
could play an important. role in the transition to turbulence of pipe flow. 

2. Formulation and linear stability analysis 
Consider an infinitely long circular pipe of radius ro, 0 < r < ro,  - co < z < 03. The 

basic laminar flow consists of a parabolic velocity profile in the axial direction and 
a rigid-body rotation in the azimuthal direction ; in cylindrical polar coordinates the 
basic-flow velocity components are (U, 3, W) = (0, w r ,  Wo( 1 - r 2 / r t ) ) ,  where Wo is the 
centreline axial velocity and w is the constant rotation rate. The corresponding 
pressure follows from the Navier-Stokes equations : 

where p is the fluid density and v is the kinematic viscosity. 

perturbations to the basic steady flow : 
The stability of rotating-pipe flow is examined by investigating the evolution of 



Rotation effects on pipe-jlow stability 195 

%, V ,  W being the radial, azimuthal and axial velocity components respectively, and 
9 the pressure. It proves convenient to use dimensionless (primed) variables : 

r = Tor’, z = Ez’, u = yeW0u’, v = ,uEW,V’, I 

where 1 is the typical lengthscale of variation of the perturbations in the axial 
direction, and y = ro l l ;  the dimensionless parameter E quantifies the ratio of the 
typical axial perturbation velocity to the centreline basic-flow velocity W,, and is a 
measure of nonlinearity. 

The governing dimensionless equations for the perturbation quantities are obtained 
by substituting ( 2 )  and (3) into the continuity and the Navier-Stokes equations. Our 
interest centres on the nonlinear behaviour of those perturbations that require the 
least amount of rotation to become linearly unstable. The linear stability analysis 
of Mackrodt (1976) shows that such perturbations, which are non-axisymmetric, vary 
slowly in the axial direction (y --f 0) and are found as the Reynolds number R = W, ro /v  
becomes large (R+ CQ), so that the modified Reynolds number a = ,uR remains finite. 
In addition, the relative magnitudes of the radial and azimuthal perturbation 
velocity components are O(y) compared with the axial perturbation velocity com- 
ponent; this relation is brought out by the scalings chosen in (3). Accordingly, in the 
limit y+O and a finite, the perturbation equations, in terms of the transformed 
velocity components (a, 5,6) = r’(u’, w’, w‘) of Mackrodt (when the primes are 
dropped) read 

(4) 

where 

is the azimuthal Reynolds number, and N,,  N, ,  N3 are the nonlinear terms 

(9) 

In addition, the perturbation quantities should be regular at the centre of the pipe, 
and the velocity components should satisfy the no-slip condition at the wall : 

a = f i = G = O  ( r = 1 ) .  (12) 
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The linearized perturbation equations follow from (4)-(7) by setting c = 0;  the 
linear stability analysis proceeds in the usual way by considering normal modes : 

( i i , v " ,  G) = ( U ( r ) ,  V ( r ) ,  W ( r ) )  ei@, p = P(r) ei@, (13) 

where 9 = z + B - c t .  (14) 

Note that, without any loss of generality, the axial wavenumber has been normalized 
to unity; this choice fixes the lengthscale 1. Furthermore, the azimuthal wavenumber 
is also taken to be equal to  unity, for, as shown by Mackrodt (1976), those modes 
are the most unstable and are of primary interest in the subsequent analysis. 

Substitution of (13) into (4)-(7) with E = 0 leads to a system of ordinary differential 
equations for the modal amplitudes U ,  V ,  W ,  P :  

d 
dr 
-x= KX,  

where Xis  a column vector with entries U ,  V ,  W ,  P ,  F ,  G ;  F and G being the auxiliary 
variables F = dV/dr, G = dW/dr, and K the 6 x 6 matrix with non-zero elements 

1 
k l ,=-- ,  k = - i  9 k 2 5 -  - 1  k 36- - 1  

r l3 

- 1  
k,, = - 

Rr2 ' 
k,, =z, -i k,, = - 2  

1 1 
r2 r k,, = - + a + p r 2 ,  k,, = i a ,  k,, = -, 

(17) 

I I 1 
r 

k,, = -2Rr, k,, = a+pr2 ,  k,, = -, 

where 01 = iR(1-c)+iQ, p = -22. 
The system of equations (15), together with the regularity conditions at the centre 
of the pipe and the no-slip condition a t  the wall, 

U = V = W = P = O  (? -=0) ,  (18) 

U = V = W = O  ( r = l ) ,  (19) 

form an eigenvalue problem for c = c,+ici, which has been analysed in detail by 
Mackrodt (1976) and Cotton & Salwen (1981). They find that linear instability (ci > 0 )  
requires 52 < 0 (i.e. the swirl of the unstable perturbations is in the direction opposite 
to the rigid rotation 52). The neutral-stability curve in terms of 52 and a is reproduced 
in figure 1 ;  the minimum rotation (in absolute value) for neutral stability is 
52 = -29.96 a t  a = 106.6. 

It is clear from the definition of 52 in (8) that, on the linear neutral stability curve, 
the ratio of the azimuthal basic-flow velocity component a t  the wall, wr,,, to the axial 
centreline velocity W, is O( p) .  Thus, as first pointed out by Mackrodt (1976), the linear 
stability theory suggests that, a t  high Reynolds number, a relatively small azimuthal 
velocity component is capable of destabilizing pipe flow. However, the behaviour of 
a linearly unstable disturbance in the finite-amplitude regime cannot be inferred 
without assessing the importance of the neglected nonlinear terms. I n  $ 3  a consistent 
finite-amplitude expansion is developed close to  the linear neutral stability curve. 
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FIGURE 1.  The linear neutral-stability curve. 

3. Finite-amplitude stability analysis 
In  the finite-amplitude regime, 0 < E + 1 ,  a linearly neutral disturbance can be 

formally expanded in a StuartrWatson-type expansion (Stuart 1960 ; Watson 1960) : 

x = ( A ( T ) X ~ ' ~ + C . ~ . ) + ~ ( A ~ X ~ ~ ~ ~ ~ ~ ~ + C . C . ) + E ~ A ~ ~ X ( ~ ) + ~ ( ~ ~ ) ,  (20) 

where x is the column vector with entries ii, v", G, p, av"//ar, aG/ar, and C.C. denotes the 
complex conjugate. The leading-order term in (20) is the result of the linear theory 
outlined above, with the modal vector Xnormalized so that W = 1 ,  where IWl attains 
its maximum value in 0 < r < 1 .  (Figures 2a, 6 , c  show U(r) ,  V ( r ) ,  W ( r )  for 
SZ = - 26.96, R' = 106.6.) The amplitude of the primary harmonic A(T) is a function 
of the slow timescale T = E 2 t  owing to finite-amplitude effects. The O ( s )  terms in (20) 
represent the second harmonic (proportional to A 2 ) ,  generated by the self-interaction 
of the primary harmonic, and the induced mean-flow distortion (proportional to  lAI2). 

The aim of the following analysis is to  investigate the behaviour of the amplitude 
A with T. To this end, the second harmonic and the mean-flow distortion need to 
be specified first. 

3.1. The second harmonic 

Substitution of the proposed expansion (20) into the governing equations (4)-(7) and 
the boundary conditions shows that the modal vector of the O(E)  second-harmonic 
response satisfies the inhomogeneous problem 

the forcing term Q ( 2 )  is a column vector with non-zero entries 
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FIQURE 2. The modal amplitudes of the primary harmonic €or 52 = -26.96, w = 106.6 (-, real 
part; - - - , imaginary part): (a )  radial velocity component; ( b )  azimuthal velocity component; 
( c )  axial velocity component. 
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and K(2) is a 6 x 6 matrix with non-zero elements 

4 1 
k g )  = -p+2a+ 2pr2, k$i) = 2i2, kit) = ;, 

3 
kg)  = -2Xr, k g )  = >+ 2a + 2pr2, k$ = ;. 

r ‘ J  
The solution of the system (21), subject to the boundary conditions (22) and (23), 

was computed numerically, using a standard fourth-order RungeKut ta  scheme. 
Since the system (21) is singular a t  the centre of the pipe, i t  was necessary to start 
the numerical integration a t  a small distance away from the centre, using small-radius 
expansions of the regular homogeneous solutions and of a particular integral of (21). 
(For the complete details, which are quite involved owing to the presence of 
higher-order logarithmic terms in certain cases, the reader is referred to  Demurger 
(1984).) It can be shown that the system of equations (21) has only three independent 
homogeneous solutions that satisfy the condition (22) ; the appropriate linear 
combination that satisfies the no-slip condition at the wall is determined by 
advancing numerically the three homogeneous solutions and a particular integral 
towards the wall, and imposing (23). Figures 3(a,  b,c) show U 2 ) ( r ) ,  V 2 ) ( r ) ,  W(”(r) for 
Q = -26.96, 2 = 106.6. 

3.2. The mean-$ow distortion 

The amplitude so) of the O ( s )  mean-flow distortion induced by nonlinear effects is 
determined by solving the inhomogeneous problem 

d 
dr (28 ) - s o )  -K(O)X(O) = Q(0)  

the non-zero entries of Q ( O )  are 

a 
Q‘$@ = ;(U*F+iW*V)+c.c., 
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FIGURE 3. The modal amplitudes of the second harmonic for 0 = -26.96, l? = 106.6 (-, real 
part; - - -, imaginary part): fa) radial velocity component; (6) azimuthal velocity component; 
( e )  axial velocity component. 
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while the non-zero elements of the matrix K(O) are 

The system of equations (28), subject to the boundary conditions (29) and (30), 

(35) 
implies that 

U(O)(r) = 0 ;  

the two independent homogeneous solutions of (28) that  satisfy the conditions (29) 
at the centre are 

(VO), WO), PO)) = (P, 0, Qr2/R) (36) 

and ( V O ) ,  WO), Po)) = (0, r ,  0). (37) 

The appropriate linear combination of (36) and (37) is specified by computing 
numerically a particular integral of (28) which satisfies (29) (using small-radius 
expansions near r = 0, as before) and imposing the no-slip condition (30) at the wall. 
The azimuthal and axial components of the induced mean flow V(O) and W(O) are shown 
in figures 4(a ,  h )  for a = -26.96, a = 106.6. It is important to notice that the induced 
mean-flow components are typically O(10) and not O(1) as would normally be 
expected; as will be seen, this will have an important effect on the results of the 
non-linear analysis. 

3.3. The evolution equation for A ( T )  
The evolution of the amplitude A ( T )  is determined by considering the inhomogeneous 
problem for the O(e2)  correction to the primary harmonic.? Returning to the 
expansion (20) and the governing equations (4)-(7), it  is clear that the inhomogeneous 
terms of this problem are proportional to A2A* or dA/dT. Accordingly the relation 

is assumed, h being the Landau constant, which will be specified by the requirement 
that  the inhomogeneous problem for the O(c2) correction to the primary harmonic 
has a solution. To this end, the O(e2)  correction to the primary harmonic is taken to 
be of the form e2A2A* Yei$+ C.C. ; (4)-(7) and the boundary conditions at the centre 
of the pipe and the wall then imply that the column vector Y(r) satisfies the 
inhomogeneous system 

subject to the boundary conditions 

Y, = Y2 = Y, = Y, = 0 ( r  = 0), (40) 

q =  Y 2 =  q = O  ( r = 1 ) .  (41) 

7 To O(e2) the nonlinear interactions also generate third harmonics, proportional to e3'@, but these 
do not affect the evolution of A(T) ,  since they are not secular. 



202 T .  R.  Akylas and J.-P. Demurger 

r 

FIGURE 4. The induced mean flow for l2 = -26.96, R = 106.6: (a) azimuthal velocity 
component; (h)  axial velocity component. 
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i-? 
2) - - 2i v* W(2) - i v(2) W* + i v(0) W- UWCO) - u* W(2) - U(2) W*) 2; - r 2 (  

i-? + - r ( UC@) + U*@) + U ( 2 W  + i W(2) W* + i W(0) W ) .  (45) 

Note that the matrix K in (39) is the one referred to  in (15). Thus the homogeneous 
part of the problem (39)-(41) is exactly the same as the linear-stability eigenvalue 
problem (15), (18), (19). Since c is an eigenvalue, the inhomogeneous problem (39)-(41) 
does not have a solution, unless the Landau constant h is chosen suitably. 

To determine the appropriate solvability condition for the inhomogeneous problem 
(39)-(41) and thereby specify A,  the following procedure was adopted : the solution 
of the system (39), subject to the condition (40) at the centre of the pipe, may be 

written as 3 

Y = 2 CiXi+hA(')+A(2) ,  (46) 
i-1 

where X, (i = 1 ,2 ,3 )  are the three linearly independent regular solutions of the 
homogeneous system (15), C, (i = 1,2 ,3)  are arbitrary constants, and A(j )  satisfy the 
inhomogeneous systems 

subject to the condition (40) at the centre. Thus, for Y to be the required solution 
of (39)-(41), i t  remains to  ensure that the no-slip condition (41) is satisfied. This leads 
to the following matrix equation for the constants C, : 

(48) xc = -ha(')-@) 

where X is the 3 x 3 matrix whose ith column consists of the first three entries of Xi 
evaluated at r = 1 ;  C is the column vector with elements Ci, and dl ) ,  a@) are 
respectively the column vectors formed by the first three entries of the vectors A(1), 
A(2)  evaluated at r = 1 .  However, the matrix X in (48) is singular, since c is an 
eigenvalue. Therefore the inhomogeneous system (48) does not have a solution unless 
the right-hand side is orthogonal to the solution C of the corresponding transpose 
homogeneous system 

C t ( h U ( 1 )  +a@))  = 0,  (49) 

where XtC = 0. (50) 

The solvability condition (49) specifies the Landau constant 

The Landau constant was calculated for eleven combinations of a and a on the 
neutral-stability curve of the linear theory; the results are given in table 1 .  Most of 
the work involved in the calculation of h is associated with the numerical solution 
of the inhomogeneous problem for At2) in (47); as already indicated, a small-radius 
expansion of the solution is required and tends to be a likely source of algebraic errors. 
As a check, the behaviour of the numerical solution for small r was investigated and 
was found to be consistent with the result of the small-radius expansion. I n  addition, 
the use of a refined integration step did not alter the results within the accuracy 
reported here. 
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- 32 
- 31 
- 30 
- 29 
- 28 
- 26.96 
- 28 
- 29 
- 30 
- 31 
-32 

R 
64.6 
68.2 
72.5 
77.9 
85.4 

106.6 
131.4 
142.0 
150.6 
157.9 
164.5 

A, x 10-4 

3.38 
3.43 
3.50 
3.61 
3.80 
4.46 
5.30 
5.65 
5.90 
6.10 
6.27 

x 10-4 

-0.27 
-0.29 
-0.32 
-0.37 
-0.46 
-0.88 
-1.68 
-2.10 
-2.46 
- 2.79 
-3.10 

TABLE 1 .  Eleven values of the Landau constant A = A, + iAi on the linear 
neutral-stability curve 

4. Discussion 
The main outcome of the present analysis are the values of the Landau constant 

listed in table 1 .  From these values, several conclusions can be drawn concerning the 
finite-amplitude stability of rotating pipe flow at high Reynolds number : first, the 
flow is subcritically unstable, since the real part of h is positive (A, > 0); finite- 
amplitude perturbations are nonlinearly unstable outside (and close to) the neutral- 
stability curve of the linear theory (see figure 1).  More precisely, from the evolution 
equation (38) it  follows that the magnitude of the complex amplitude A is governed 

The equation (52 )  includes the effect of the exponential growth or decay predicted 
by the linear theory away from t,he linear neutral-stability curve and is a straight- 
forward generalization of (38). (Formally, for ( 5 2 )  to be valid, ci has to be O(s2).) Thus, 
for ci < 0, and since A, > 0, ( 5 2 )  implies that there exists a threshold amplitude above 
which nonlinear (subcritical) instability occurs. Accordingly, the amount of rotation 
required to destabilize pipe flow is even smaller than that predicted by the linear 
theory; the suggestion of Mackrodt (1976) regarding the role of a small amount of 
extraneous rotation in the transition to turbulence of pipe flow appears to gain further 
support by the nonlinear theory. 

There is a further aspect of the results of the nonlinear analysis, however, which 
deserves special attention : the surprisingly large magnitudes of the Landau constant. 
For example, in plane Poiseuille flow, a t  the critical Reynolds number for linear 
instability ( R  = 5772) ,  A, is three orders of magnitude smaller than the present values 
(Reynolds & Potter 1967). One could argue that this difference is due to the 
assumption of a large Reynolds number ; however, the numerical calculations of 
Cotton & Salwen (1981) indicate that the limit p+O, R+m, a finite, considered 
here, has been reached at  Reynolds numbers as low as R = 1000. Thus one is led to 
conclude that, in the present problem, nonlinearity is particularly strong. The cause 
of the large magnitudes of h is the relatively large mean-flow distortion induced by 
the Reynolds stress (see figures 4a,b). 

The large magnitudes of h suggest that  the validity of the Stuart-Watson 
expansion (20) is restricted to very small values of t'; the evolution of unstable 
perturbations is very soon governed by fully nonlinear processes, which cannot be 
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described by weakly nonlinear theories. I n  this sense, the information provided by 
a linear stability analysis is very limited. 

The possibility of large Landau constants has been considered by Davis & 
Rosenblat (1977), in certain model problems. They find that,, as the magnitude of the 
Landau constant increases, the region of validity of the weakly nonlinear expansion 
shrinks until, finally, the linear theory is completely invalidated in the limit of infinite 
Landau constant, and the evolution of perturbations to  leading order is determined 
by a fully nonlinear balance. It is interesting to note that, in the case of rotating-pipe 
flow, the magnitude of the Landau constant increases as a/R decreases on the 
neutral-stability curve (see table 1 ) .  This suggests that the region of validity of the 
expansion (20) shrinks, as the ratio of the azimuthal to the axial basic-flow velocity 
component decreases ; that  is, i t  appears that  nonlinearity becomes increasingly more 
important as rotating-pipe flow tends to be ‘closer’ to non-rotating pipe flow. This 
interesting possibility could be investigated by numerical experiments with the full 
nonlinear problem. 

The authors would like to thank Professor S. H. Davis for an illuminating 
discussion on this topic. This research was supported by the National Science 
Foundation (Grant MEA 82-04785). 

R E F E R E N C E S  

BHAT, W. V. 1966 Ph.D. dissertation, University of Rochester, New York. 
COTTON, F. W. & SALWEN, H.  1981 J .  Fluid Mech. 108, 101. 
DAVEY, A.  1978 J .  Fluid Mech. 86, 695. 
DAVEY, A. & NGUYEN, H.  P. F. 1971 J .  Fluid Mech. 45, 701. 
DAVIS, S. H. & ROSENBLAT, S. 1977 Stud. Appl.  Maths 57, 59. 
DEMURGER, J.-P. 1984 6. M. thesis, MIT. 
HERBERT, T. 1983 J .  Ftuid Mech. 126, 167. 
ITOH, N. 1977 J .  Fluid Mech. 82, 469. 
LEITE, R. J .  1959 J .  Fluid Mech. 5,  81. 
MACKRODT, P. A. 1976 J .  Fluid Mech. 73, 153. 
ORSZAG, S. A. & I’ATERA, A. T. 1983 J .  Fluid Mech. 128, 347. 
PATERA, A. T. & ORSZAG, S .  A. 1981 J .  Fluid Mech. 112, 467. 
REYNOLDS, 0. 1883 Phil. Trans.  R. SOC. Lond. A 174, 935. 
REYNOLDS, W. C. & POTTER, M. C. 1967 J .  Fluid Mech. 27, 465. 
SALWEN, H. ,  COTTON, F. W. & GROSCH, C. E. 1980 J .  Fluid Mech. 98, 273. 
SMITH, F. T. & BODONYI, R.  J. 1982 Proc. R. Sor. Lond. A 384, 463. 
STUART, J. T. 1960 J .  Fluid Mech. 9, 353. 
WATSON, J. 1960 J .  Fluid Mech. 9, 371. 




